
Solutions to Binary Imbalanced Classification
Ziyuan Feng

Department of Computer Science and Engineering, Fudan University
zyfeng15@fudan.edu.cn

I. INTRODUCTION

This paper studies the binary imbalanced classification prob-
lem, presents various approaches to handle data imbalance, and
examines the effects of these approaches over three real word
datasets. Possible approaches include data-level and algorithm-
level strategies. Data-level strategies balance the number of
two classes by re-sampling, such as under-sampling, over-
sampling, and their combination. Algorithm-level strategies
either use ensemble learning with re-sampled subsets of data,
or modify the loss function to make the model cost-sensitive to
different classes. Besides, there are special methods to handle
data imbalance for some particular models, such as SVMs and
XGBoost.

II. PROBLEM OVERVIEW

In binary classification with imbalance data, one class has
far more data (samples, or instances) than the other class.
The former is called majority class (or majority). The latter is
called minority class (or minority). The class which a sample
belong to is called a label. This paper does not distinguish
between ”classes” or ”labels” literally.

Typically, without extra strategies, most classification mod-
els will think of any sample being majority class as much
as possible, while ignoring mistakes on minority class. This
makes the true positive rate (TPR), precision, recall, and F-
measure obviously high. However, the model does not learn
anything about the minority class or how it differentiates from
majority class. Therefore, more attention should be paid on
these evaluation indicators: true negative rate (TNR), G-mean
(geometric mean of TPR and TNR), and area under receiver
operating characteristic curve (AUC).

III. BASELINE

In this section, logistic regression (LR), support vector
machines (SVM), multilayer perceptrons (MLP), and decision
trees (DT) are used as baseline models.

These models follow the default settings from sklearn [1].
Logistic regression uses L2 penalty. SVM uses a linear kernel.
MLP uses one hidden layer of size 100, ”relu” as an activation
function, and the Adam solver with initial learning rate 0.001.
Decision trees use ”Gini” criteria for splitting and have no
restriction for depth or the number of leaves.

Common classifiers like logistic regression and SVM have
a bias towards classes which have large number of instances.
They tend to only predict the majority class. The features of
the minority class are treated as noise and are often ignored.
Thus, there is a high probability of misclassification of the

TABLE I
Baseline models on car dataset.

LR SVM MLP DT
TNR 0.000 0.000 0.333 0.875

G-mean 0.000 0.000 0.577 0.933
AUC 0.497 0.500 0.666 0.935
FPR 1.000 1.000 0.667 0.125
TPR 0.953 1.000 0.998 0.995

Precision 0.995 0.953 0.969 0.933
Recall 0.953 1.000 0.998 0.995

F-measure 0.974 0.976 0.983 0.994

TABLE II
Baseline models on yeast dataset.

LR SVM MLP DT
TNR 0.514 0.428 0.714 0.737

G-mean 0.727 0.654 0.845 0.841
AUC 0.932 0.714 0.857 0.837
FPR 0.459 0.571 0.285 0.263
TPR 0.982 1.0 1.0 0.968

Precision 0.946 0.985 0.972 0.968
Recall 0.982 1.0 1.0 0.968

F-measure 0.949 0.972 0.986 0.968

TABLE III
Baseline models on wisconsin dataset.

LR SVM MLP DT
TNR 0.857 0.857 0.928 0.857

G-mean 0.919 0.922 0.960 0.905
AUC 0.924 0.925 0.960 0.907
FPR 0.142 0.142 0.07 0.142
TPR 0.985 0.992 0.992 0.957

Precision 0.985 0.985 0.992 0.985
Recall 0.985 0.992 0.992 0.957

F-measure 0.985 0.989 0.992 0.971

minority class as compared to the majority class. As shown in
Table 1, LR and SVM have high true positive rate, precision,
and F-measure, but low true negative rate, G-mean, and AUC.

Compared to LR and SVM, MLP and DT do better in
treating the minority class. In the following sections, linear
regression is used to evaluate different methods of improving
performance on minority class. A good method is expected
to increase TNR, G-mean, and AUC of a logistic regression
classifier.

IV. DATA-LEVEL STRATEGIES

The main objective of balancing classes is to either increase
the number of minority or decrease the number of majority,
in order to obtain the approximately the same number of
instances of both classes.

A. Under-sampling

1) Random: This strategy randomly eliminates some in-
stances of majority class in the training data. It could improve
the running time and storage when dealing with large datasets.
However, it suffers from severe information loss because
the under-sampled data may be the inaccurate and biased
representation of the original data.

2) Condensed nearest-neighbor(CNN): Under-sampling
can be viewed as a process of finding representatives of the
majority data. Thus, nearest-neighbor method could be useful
to determine which sample to be picked. Condensed nearest-
neighbor method [2] constructs a subset S of the original
dataset T , such that for each sample in T , its nearest neighbor
of the same class can be found in S. The subset S can grow
iteratively, given by the following algorithm.

1: procedure CONDENSED NEAREST-NEIGHBOR(T)
2: randomly select a sample u from T
3: S ← {u}
4: while S not converge do
5: for each v in T − S do
6: n← FindNearestNeighbor(v, S) . Find

the nearest neighbor of v in S
7: if n is of a different class from v then
8: add v to S
9: end if

10: end for
11: end while
12: return S
13: end procedure

3) Edited nearest-neighbor(ENN) : Another nearest neigh-
bor algorithm considers more than one neighbors. In edited
nearest-neighbor [3], a sample is removed whose label differs
from the majority of its k neighbors, where k is a hyper-
parameter.

Repeating the algorithm multiple times will delete more
data. This gives the repeated edited nearest-neighbor (RENN)
under-sampling method.

4) Tomek’s links: A Tomek’s link [4] refers to a pair of
samples from different labels which are each other’s near-
est neighbor. Under-sampling can be done by removing all
Tomek’s links, or just the samples from majority class of the
links.

This method, however, will change the distribution of ma-
jority class, resulting in over-fitting on the training set and low
performance on the test set.

5) One-side-selection(OSS): This algorithm is an extension
of Tomek’s link.

1: procedure ONE-SIDE-SELECTION(T)
2: S ← ∅
3: for each v in T do
4: n← FindNearestNeighbor(v, T)
5: if n is of a different class from v then
6: add v to S . (v, n) is a Tomek’s link.
7: end if
8: end for

9: return S
10: end procedure
One side selection method has the same problem as Tomek’s
link.

6) NearMiss: NearMiss [5] is a family of under-sampling
methods based on distance calculation.

In NearMiss-1, the samples of the majority class are retained
whose average distance to k nearest samples from the minority
class is smallest. In NearMiss-2, the samples from majority
are retained whose average distance to k farthest samples of
minority class is smallest. In NearMiss-3, k nearest neighbors
from majority class are selected for each sample in minority
class. In three cases, k is a hyper-parameter.

B. Over-sampling

1) Random: Contract to the previous ones, over-sampling
randomly replicates instances of minority class. This can be
done without information loss, but may lead to over-fitting.

2) Subclass-based: This method assumes each class con-
tains several subclasses, and randomly over-samples all sub-
classes until all subclasses within the same class have the same
number of observations. However, subclasses may be implicit,
or such assumption does not necessarily hold for a specific
problem. In fact, K-means clustering algorithm is applied to
discover subclasses.

3) Synthetic minority over-sampling technique(SMOTE):
Instead of replicating minority instances, SMOTE [6] gen-
erates similar synthetic instances using a subset of the mi-
nority class. SMOTE helps prevent over-fitting, but possibly
introduces noise from new instances that fall into regions
overlapped with majority class.

1: procedure SMOTE(M) . M is the minority set
2: S ← ∅
3: for each v in M do
4: n1, · · · , nk ← FindNearestNeighbor(v,M, k)
. Find the k nearest neighbors of v in M

5: randomly choose r ≤ k neighbors ni1 , · · · , nir
6: for each p in ni1 , · · · , nir do
7: randomly choose α in [0, 1]
8: u← αv + (1− α)n
9: add u to S

10: end for
11: end for
12: return S

⋃
M

13: end procedure
4) Adaptive synthetic (ADASYN): ADASYN [7] uses a

density distribution as a criterion, which is a measurement
for minority class samples according to the level of difficulty
in learning, to automatically decide the number of synthetic
samples that need to be generated. More synthetic samples
will be generated for samples that are hard to learn than the
ones that are easy to learn.

C. Combining under- & over-sampling

Combining over-sampling on minority class and under-
sampling on majority class may yield better results than using

only one. Two common combinations are SMOTE+ENN and
SMOTE+Tomek’s link.

V. ALGORITH-LEVEL STRATEGIES

An alternative approach to handle imbalanced classification
is to modify existing models and make them capable for
imbalanced datasets. The following sections discuss ensemble
methods and model-specific methods.

A. Ensemble methods

Rather than build one classifier on one re-sampled dataset,
ensemble methods combine different classifiers built on dif-
ferent re-sampled datasets.

1) Easy Ensemble: In Easy Ensemble [8], a sequence of
classifiers are built by sampling subsets from the majority class
such that the subset contains the same number of samples as
the minority class. In fact, this is the AdaBoost process.

1: procedure EASY-ENSEMBLE(P,Q) . P is the minority
class, Q is the majority class

2: for i = 1, · · · , N do
3: randomly sample a subset Qi from Q such that
|Qi| = |P |

4: build an AdaBoost classifier Fi(x) using Qi

⋃
P

5: end for
6: combine Fi(x), i = 1, · · · , N to obtain an ensemble

classifier
7: end procedure
2) Balance Cascade: Balance Cascade [8] is a modification

of Easy Ensemble in which the misclassified samples are
selected again in the next iteration.

1: procedure BALANCE-CASCADE(P,Q) . P is the
minority class, Q is the majority class

2: for i = 1, · · · , N do
3: randomly sample a subset Qi from Q such that
|Qi| = |P |

4: build an AdaBoost classifier Fi(x) using Qi

⋃
P

5: remove samples in Q correctly classified by Fi(x)
6: end for
7: combine Fi(x), i = 1, · · · , N to obtain an ensemble

classifier
8: end procedure
3) Bagging: With the framework provided by Easy En-

semble, bagging can be applied over all re-sampled datasets.
The only change to the algorithm is in Line 4 ”build a base
classifier Fi(x) using Qi

⋃
P ”.

4) Gradient boosting decision trees: As an ensemble
method, gradient boosting decision trees (GBDT) build an
additive model iteratively. At each step, a decision tree is
chosen as a weak learner to minimize the current loss given by
the model built in previous steps. The minimization is solved
numerically.

B. Weighted loss function

One way to force the algorithm to pay more attention
to the minority class is to modify the loss function so that

misclassifying samples from the minority class will be highly
penalized, which is called cost-sensitive approaches in [9].

Formally, let xi and yi be the features and label of the i-th
sample, θ be the model parameters. The posterior probability
P (yi|xi, θ) shall be maximized. Let f(.) be a monotonically
increasing function with respect to P (yi|xi, θ). Then the loss
function (without regularization, same as below) for binary
classification can be defined as

L(θ) = −
1∑

j=0

∑
yi=j

f(P (yi|xi, θ)) (1)

Let wj be the weight corresponding to class j. The weighted
loss function can be defined as

L(θ) = −
1∑

j=0

wj

∑
yi=j

f(P (yi|xi, θ)) (2)

In this case, the model will be heavily punished when making
mistakes on class 1 as long as w1 > w0 > 0.

In scikit-learn [1], the balancing weights are often calcu-
lated as a number inversely proportional to class frequencies
in the training data. For example, the weight corresponding to
class j is

wj =
N

C × |{yi = j|i = 1 · · ·N}|
(3)

where N is the total number of samples, C is the number of
classes. In binary classification, C = 2.

Both Logistic Regression(LR) and multi-layer percep-
tron(MLP) classifiers use cross-entropy loss in scikit-learn
[1]. The weighted loss function is

L(θ) = −
1∑

j=0

wj

∑
yi=j

log(P (yi = 1|xi, θ)) (4)

In Support Vector Machine(SVM) with hinge loss, the
weighted loss function is

L(θ) = −
1∑

j=0

wj

∑
yi=j

yi max{0, 1+θTxi}+(1−yi)max{0, 1−θTxi}

(5)

C. Model-specific methods

Some solutions to imbalanced classification are model-
based, which means they cannot generalize to other models
or algorithms.

1) kernel-based methods: Instead of balancing the data or
improving algorithms, the use of kernels in SVMs optimizes
features to make the problem more ”classifiable”. A kernel
function is used to map the linear non-separable space into a
higher dimensional space where separation is more likely to
be achievable.

Integrating kernel methods with sampling gives the Granular
Support Vector Machines Repetitive Under-sampling algo-
rithm (GSVM-RU) [10], which can effectively analyze the
inherent data distribution by observing the trade-offs between
the local significance of a subset of data and its global
correlation.

2) tree-based methods: XGBoost [11] is an advanced gradi-
ent boosting decision tree framework for classification. There
are two ways to handle imbalance in XGBoost. One is to
restrict the complexity of the trees by capping the maximum
weight of a regression tree. The weight of a decision tree could
be defined differently. For example, it is the weighted sum of
the number of leaves and the L2 norm of leaf scores.

The other way is to control the balance of positive and
negative weights explicitly. Since XGBoost is optimized using
an objective function, it is easy to modify the objective to make
the model cost-sensitive.

VI. EXPERIMENTS

TABLE IV
results on cat dataset: minority ratio=3.76%

baseline under-sampling over-sampling
LR random CNN ENN TL OSS NM-1 NM-2 NM-3 random subclass SMOTE ADASYN

TNR 0.0 0.196 0.318 0.353 0.0 0.0 0.061 0.177 0.093 0.232 0.232 0.240 0.234
G-mean 0.0 0.440 0.553 0.510 0.0 0.0 0.242 0.420 0.296 0.481 0.481 0.489 0.483

AUC 0.497 0.940 0.951 0.951 0.497 0.497 0.656 0.931 0.808 0.952 0.952 0.952 0.952
F-measure 0.974 0.912 0.972 0.977 0.974 0.974 0.761 0.905 0.868 0.932 0.932 0.935 0.933

under- & over-sampling ensemble weighted loss model-specific
SMOTE+ENN SMOTE+TL EE BC bagging GBDT LR SVM DT Gaussian SVM XGBoost

TNR 0.229 0.242 0.875 0.874 0.833 0.983 0.230 0.214 0.986 0.980 0.973
G-mean 0.478 0.491 0.933 0.931 0.912 0.991 0.479 0.462 0.992 0.985 0.986

AUC 0.951 0.952 0.935 0.935 0.916 1.000 0.952 0.950 0.977 0.998 1.000
F-measure 0.931 0.936 0.994 0.994 0.995 0.999 0.932 0.922 0.999 0.995 0.999

TABLE V
results on yeast dataset: minority ratio=9.92%

baseline under-sampling over-sampling
LR random CNN ENN TL OSS NM-1 NM-2 NM-3 random subclass SMOTE ADASYN

TNR 0.0 0.460 0.624 0.0 0.0 0.0 0.510 0.808 0.698 0.571 0.572 0.586 0.455
G-mean 0.0 0.670 0.670 0.0 0.0 0.0 0.704 0.886 0.827 0.747 0.798 0.757 0.671

AUC 0.5 0.925 0.914 0.5 0.5 0.5 0.903 0.932 0.922 0.935 0.935 0.937 0.949
F-measure 0.952 0.933 0.959 0.952 0.952 0.952 0.943 0.977 0.971 0.954 0.955 0.957 0.930

under- & over-sampling ensemble weighted loss model-specific
SMOTE+ENN SMOTE+TL EE BC bagging GBDT LR SVM DT Gaussian SVM XGBoost

TNR 0.520 0.573 0.928 0.928 0.857 0.778 0.857 0.857 0.714 0.0 0.750
G-mean 0.714 0.749 0.960 0.957 0.919 0.863 0.875 0.888 0.836 0.0 0.846

AUC 0.938 0.939 0.960 0.959 0.921 0.980 0.875 0.889 0.846 0.5 0.967
F-measure 0.945 0.954 0.992 0.992 0.985 0.970 0.936 0.952 0.975 0.952 0.966

TABLE VI
results on wisconsin dataset: minority ratio=34.97%

baseline under-sampling over-sampling
LR random CNN ENN TL OSS NM-1 NM-2 NM-3 random subclass SMOTE ADASYN

TNR 0.857 0.951 0.838 0.940 0.950 0.920 0.951 0.958 0.926 0.947 0.944 0.951 0.941
G-mean 0.919 0.966 0.914 0.961 0.962 0.954 0.963 0.965 0.959 0.964 0.962 0.964 0.966

AUC 0.924 0.993 0.994 0.995 0.994 0.994 0.994 0.994 0.994 0.994 0.993 0.994 0.995
F-measure 0.985 0.977 0.941 0.974 0,973 0.971 0.974 0.974 0.975 0.976 0.974 0.975 0.979

under- & over-sampling ensemble weighted loss model-specific
SMOTE+ENN SMOTE+TL EE BC bagging GBDT LR SVM DT Gaussian SVM XGBoost

TNR 0.936 0.951 0.956 0.956 0.927 0.971 0.951 0.947 0.932 0.915 0.940
G-mean 0.958 0.966 0.963 0.963 0.952 0.974 0.968 0.965 0.942 0.954 0.959

AUC 0.994 0.994 0.963 0.963 0.952 0.974 0.995 0.995 0.938 0.988 0.989
F-measure 0.972 0.977 0.974 0.974 0.970 0.981 0.979 0.977 0.959 0.972 0.973

A. Settings

Experiments are conducted over three imbalanced datasets,
car, yeast, and wisconsin, with different minority ratios.
The machine learning framework used in the experiment is
scikit-learn [1] and most of the strategies are implemented
in imbalanced-learn [12]. The default parameter settings of
these models are used in the experiment. What’s more, 5-fold
validation is applied and all evaluation indicators are averaged
over 5 folds.

In edited nearest neighbor, NearMiss family, and SMOTE,
k is set as 3.

In XGBoost, weights of the minority class is scaled corre-
sponding to the minority ratio of the dataset. For example, this
value is 10 in the car dataset. Moreover, the maximum depth
of each tree is 2 and XGBoost is set to optimize AUC. Another
setting of parameters to control imbalance is the maximum
weight update. The one which yields better TPR results is
chosen.

B. Result analysis

Table IV, V, and VI show experiment results on car, yeast,
and wisconsin datasets respectively. Since the minority ratios
of different datasets vary a lot, the best method on one dataset
may not be the best on another.

Gradient boosting decision trees (GBDT) achieve highest
true negative rate on car and wisconsin datasets, but performs
worse on yeast. One possible reason is that the features in
both car and wisconsin are categorical, but those in yeast
are numerical. GBDT uses decision trees as base learners
which handles categorical features better than continuous
features. This is because the splitting criteria of a decision tree
can directly considered as some combinations of categorical
features, while continuous values have to be encoded somehow
to be represented in a tree.

In the cat dataset where data imbalance is extreme, con-
densed nearest neighbors and edited nearest neighbors achieve
better performance than any other under-sampling methods.
Among over-sampling methods, SMOTE leads to the best re-
sult. Combining SMOTE with Tomek’s link results in slightly
better performance than single SMOTE. However, combining
SMOTE with ENN gets worse results than either of them.
Possible explanation is that performing ENN to under-sample
after over-sampling with SMOTE change the distribution of
the original dataset.

Tomek’s link (TL) and one-side-selection (OSS) have no
effect in the car and yeast datasets because they clean up
too many majority samples near a minority sample so that the
information of the decision boundary is lost in small datasets.
In the wisconsin dataset, TL and OSS work. Therefore, TL
and OSS should be performed in imbalanced datasets of which
minority ratio is not too small.

Ensemble methods yield significantly better results than
sampling strategies in all three datasets. They perform the
best in yeast. Among ensemble methods, Easy Ensemble and

Balance Cascade, which use AdaBoost, outperform bagging,
but lose to GBDT.

Weighted loss function also work in three datasets. For
logistic regression, support vector machines, and decision
trees, there are significant improvements after using class
weights, which can be seen by comparing Table I-III and IV-
VI respectively.

The Gaussian SVM shows extraordinary performance in the
car dataset. By simply adding a Gaussian kernel and keeping
everything else the same as before, SVM achieves a nearly
perfect solution. However, such effect may not be held in other
datasets. In the yeast dataset, adding a Gaussian kernel has
no effect at all. This may be caused by different distribution
of datasets in high dimension space.

VII. CONCLUSION

This paper explores various strategies to solve binary classi-
fication problems in imbalanced datasets. For data-level strate-
gies, either under-sampling or over-sampling is performed to
balance the size of two classes. Under-sampling finds and
keeps only the representatives of the majority class in the
original datasets and removes the other majority samples.
Over-sampling generates new samples based on original data
distribution in the minority class. Combining both is also a
strategy, but does not yield better results in the experiment.
For algorithm-level strategies, ensemble models combine weak
classifiers built on balanced re-sampled subsets to alleviate
the preference towards majority class. Weighted loss functions
yields cost-sensitive models which respond differently to two
classes. Gradient boosting decision trees give best results
in two of three datasets. Algorithm-level strategies usually
outperform data-level strategies in a large scale. They should
be the prior choice to tackle binary imbalance classification
problems. In addition, SVMs with a Gaussian kernel out-
performs those with a linear kernel in particular imbalance
datasets. XGBoost is able to improve slightly by fine-tuning
its parameters related to weight scaling and boosting steps.

In conclusion, solutions to binary classification on imbal-
anced datasets requires exploration to the data distribution and
a lot of efforts in model selection.

REFERENCES

[1] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[2] P. Hart, “The condensed nearest neighbor rule (corresp.),” IEEE trans-
actions on information theory, vol. 14, no. 3, pp. 515–516, 1968.

[3] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using
edited data,” IEEE Transactions on Systems, Man, and Cybernetics,
no. 3, pp. 408–421, 1972.

[4] I. Tomek, “Two modifications of cnn,” IEEE Trans. Systems, Man and
Cybernetics, vol. 6, pp. 769–772, 1976.

[5] I. Mani and I. Zhang, “knn approach to unbalanced data distributions:
a case study involving information extraction,” in Proceedings of work-
shop on learning from imbalanced datasets, vol. 126, 2003.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[7] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic
sampling approach for imbalanced learning,” in Neural Networks, 2008.
IJCNN 2008.(IEEE World Congress on Computational Intelligence).
IEEE International Joint Conference on. IEEE, 2008, pp. 1322–1328.

[8] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for
class-imbalance learning,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 539–550, 2009.

[9] Z.-H. Zhou and X.-Y. Liu, “On multi-class cost-sensitive learning,”
Computational Intelligence, vol. 26, no. 3, pp. 232–257, 2010.

[10] Y. Tang and Y.-Q. Zhang, “Granular svm with repetitive undersampling
for highly imbalanced protein homology prediction,” in Granular Com-
puting, 2006 IEEE International Conference on. IEEE, 2006, pp. 457–
460.

[11] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. ACM, 2016, pp. 785–794.

[12] G. Lemaı̂tre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine
learning,” Journal of Machine Learning Research, vol. 18, no. 17, pp.
1–5, 2017. [Online]. Available: http://jmlr.org/papers/v18/16-365.html

APPENDIX

Fig. 1: Visualization of yeast dataset after PCA. Red dots are
minority class.

Fig. 2: Visualization of wisconsin dataset after PCA. Red dots
are minority class.

Fig. 3: Confusion matrix of logistic regression on car dataset.
This is the baseline model.

Fig. 4: Confusion matrix of GBDT on car dataset. This is the
best model on the dataset.

Fig. 5: The AUC curve of GBDT on car dataset. This is the
best model on the dataset.

Fig. 6: The AUC curve of XGBoost on yeast dataset.

